
KNAPSACK PROBLEM 

 The knapsack problem is given n items of known weights w1, ... , wn and values v1, ... , vn 

and a knapsack of capacity W, find the most valuable subset of the items that fit into the 

knapsack. 

 This problem can also be solved using Dynamic Programming design technique. 

 A recurrence relation has to be derived that expresses a solution to an instance of the 

knapsack problem in terms of solutions to its smaller subinstances. 

 Divide all the subsets of the first i items that fit the knapsack of capacity j into two 

categories: those that do not include the ith item and those that do. 

 Among the subsets that do not include the ith item, the value of an optimal subset is, 

by definition, V[i - 1, j]. 

 Among the subsets that do include the ith item (hence, j – wi ≥ 0), an optimal subset is 

made up of this item and an optimal subset of the first i - 1 items that fit into the 

knapsack of capacity j- wi. The value of such an optimal subset is vi + V[i - 1, j - wi]. 

 Thus, the value of an optimal solution among all feasible subsets of the first i items is the 

maximum of these two values. 

 This can be expressed as 

 

with the initial condition 

 

EXAMPLE: 

Let us consider the given knapsack instance, with the sack capacity of W = 5 

Item Weight Value 

1 2 12 

2 1 10 

3 3 20 

4 2 15 

 

 

 

 



Solution 

i 0 1 2 3 4 5 

0 0 0 0 0 0 0 

w1 = 2, v1 = 12                   1 0 0 12 12 12 12 

w2 = 1, v2 = 10                   2 0 10 12 22 22 22 

w3 = 3, v3 = 20                   3 0 10 12 22 30 32 

w4 = 2, v4 = 15                   4                          0 10 15 25 30 37 

 

Fill first row and column entries by ‘0’ based on the initial condition. 

V[1,1] = V[0,1] = 0        {here, j - wi < 0} 

V[1,2] = max{V[0,2], v1 + V[0,0]} = max{0, 12 + 0} = 12   {here, j - wi  ≥ 0} 

V[1,3] = max{V[0,3], v1 + V[0,1]} = max{0, 12 + 0} = 12   {here, j - wi  ≥ 0} 

V[1,4] = max{V[0,4], v1 + V[0,2]} = max{0, 12 + 0} = 12   {here, j - wi  ≥ 0} 

V[1,5] = max{V[0,5], v1 + V[0,3]} = max{0, 12 + 0} = 12   {here, j - wi  ≥ 0} 

V[2,1] = max{V[1,1], v2 + V[1,0]} = max{0, 10 + 0} = 10   {here, j - wi  ≥ 0} 

V[2,2] = max{V[1,2], v2 + V[1,1]} = max{12, 10 + 0} = 12   {here, j - wi  ≥ 0} 

V[2,3] = max{V[1,3], v2 + V[1,2]} = max{12, 10 + 12} = 22  {here, j - wi  ≥ 0} 

V[2,4] = max{V[1,4], v2 + V[1,3]} = max{12, 10 + 12} = 22  {here, j - wi  ≥ 0} 

V[2,5] = max{V[1,5], v2 + V[1,4]} = max{12, 10 + 12} = 22  {here, j - wi  ≥ 0} 

V[3,1] = V[2,1] = 10        {here, j - wi < 0} 

V[3,2] = V[2,2] = 12        {here, j - wi < 0} 

V[3,3] = max{V[2,3], v3 + V[2,0]} = max{22, 20 + 0} = 22   {here, j - wi  ≥ 0} 

V[3,4] = max{V[2,4], v3 + V[2,1]} = max{22, 20 + 10} = 30  {here, j - wi  ≥ 0} 

V[3,5] = max{V[2,5], v3 + V[2,2]} = max{22, 20 + 12} = 32  {here, j - wi  ≥ 0} 

V[4,1] = V[3,1] = 10        {here, j - wi < 0} 

V[4,2] = max{V[3,2], v4 + V[3,0]} = max{12, 15 + 0} = 15   {here, j - wi  ≥ 0} 

V[4,3] = max{V[3,3], v4 + V[3,1]} = max{22, 15 + 10} = 25  {here, j - wi  ≥ 0} 

V[4,4] = max{V[3,4], v4 + V[3,2]} = max{30, 15 + 12} = 30  {here, j - wi  ≥ 0} 

V[4,5] = max{V[3,5], v4 + V[3,3]} = max{32, 15 + 22} = 37  {here, j - wi  ≥ 0} 

 

The maximum value of the sack is 37  

 

 



To find Solution Set 

The composition of the optimal subset is obtained by tracing back the computations of the 

entry in the table.  

Since V[4, 5] ≠ V[3, 5], item 4 was included in the optimal solution  

The remaining 3 units of the knapsack capacity is represented by element V[3, 3]. Since 

V[3,3] = V[2, 3], item 3 is not a part of the optimal subset.  

Since V[2, 3] ≠ V[l, 3], item 2 is a part of an optimal selection. 

Similarly, since V[1, 2] ≠ V[0, 2], item 1 is the final part of the optimal solution. 

 

Therefore, solution set {I1, I2, I4}. 


