KNAPSACK PROBLEM

- The knapsack problem is given n items of known weights w_{1}, \ldots, w_{n} and values $\mathrm{v}_{1}, \ldots, v_{n}$ and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack.
- This problem can also be solved using Dynamic Programming design technique.
- A recurrence relation has to be derived that expresses a solution to an instance of the knapsack problem in terms of solutions to its smaller subinstances.
- Divide all the subsets of the first i items that fit the knapsack of capacity j into two categories: those that do not include the ith item and those that do.
\checkmark Among the subsets that do not include the ith item, the value of an optimal subset is, by definition, $V[i-1, \mathrm{j}]$.
\checkmark Among the subsets that do include the ith item (hence, $j-w_{i} \geq 0$), an optimal subset is made up of this item and an optimal subset of the first $i-1$ items that fit into the knapsack of capacity j - w_{i}. The value of such an optimal subset is $v_{i}+V\left[i-1, j-w_{i}\right]$.
- Thus, the value of an optimal solution among all feasible subsets of the first i items is the maximum of these two values.
- This can be expressed as

$$
V[i, j]=\left\{\begin{array}{cc}
\max \left\{V[i-1, j], v_{i}+V\left[i-1, j-w_{i}\right]\right\} & \text { if } j-w_{i} \geq 0 \\
V[i-1, j] & \text { if } j-w_{i}<0 .
\end{array}\right.
$$

with the initial condition

$$
V[0, j]=0 \text { for } j \geq 0 \text { and } V[i, 0]=0 \text { for } i \geq 0
$$

EXAMPLE:

Let us consider the given knapsack instance, with the sack capacity of $\mathrm{W}=5$

Item	Weight	Value
1	2	12
2	1	10
3	3	20
4	2	15

Solution

i	0	1	2	3	4	5	
	0	0	0	0	0	0	0
$\mathrm{w}_{1}=2, \mathrm{v}_{1}=12$	1	0	0	12	12	12	12
$\mathrm{w}_{2}=1, \mathrm{v}_{2}=10$	2	0	10	12	22	22	22
$\mathrm{w}_{3}=3, \mathrm{v}_{3}=20$	3	0	10	12	22	30	32
$\mathrm{w}_{4}=2, \mathrm{v}_{4}=15$	4	0	10	15	25	30	$\mathbf{3 7}$

Fill first row and column entries by ' 0 ' based on the initial condition.

$$
\begin{aligned}
& \mathrm{V}[1,1]=\mathrm{V}[0,1]=0 \\
& \mathrm{~V}[1,2]=\max \left\{\mathrm{V}[0,2], \mathrm{v}_{1}+\mathrm{V}[0,0]\right\}=\max \{0,12+0\}=12 \\
& \mathrm{~V}[1,3]=\max \left\{\mathrm{V}[0,3], \mathrm{v}_{1}+\mathrm{V}[0,1]\right\}=\max \{0,12+0\}=12 \\
& \mathrm{~V}[1,4]=\max \left\{\mathrm{V}[0,4], \mathrm{v}_{1}+\mathrm{V}[0,2]\right\}=\max \{0,12+0\}=12 \\
& \mathrm{~V}[1,5]=\max \left\{\mathrm{V}[0,5], \mathrm{v}_{1}+\mathrm{V}[0,3]\right\}=\max \{0,12+0\}=12 \\
& \mathrm{~V}[2,1]=\max \left\{\mathrm{V}[1,1], \mathrm{v}_{2}+\mathrm{V}[1,0]\right\}=\max \{0,10+0\}=10 \\
& \mathrm{~V}[2,2]=\max \left\{\mathrm{V}[1,2], \mathrm{v}_{2}+\mathrm{V}[1,1]\right\}=\max \{12,10+0\}=12 \\
& \mathrm{~V}[2,3]=\max \left\{\mathrm{V}[1,3], \mathrm{v}_{2}+\mathrm{V}[1,2]\right\}=\max \{12,10+12\}=22 \\
& \mathrm{~V}[2,4]=\max \left\{\mathrm{V}[1,4], \mathrm{v}_{2}+\mathrm{V}[1,3]\right\}=\max \{12,10+12\}=22 \\
& \mathrm{~V}[2,5]=\max \left\{\mathrm{V}[1,5], \mathrm{v}_{2}+\mathrm{V}[1,4]\right\}=\max \{12,10+12\}=22 \\
& \mathrm{~V}[3,1]=\mathrm{V}[2,1]=10 \\
& \mathrm{~V}[3,2]=\mathrm{V}[2,2]=12 \\
& \mathrm{~V}[3,3]=\max \left\{\mathrm{V}[2,3], \mathrm{v}_{3}+\mathrm{V}[2,0]\right\}=\max \{22,20+0\}=22 \\
& \mathrm{~V}[3,4]=\max \left\{\mathrm{V}[2,4], \mathrm{v}_{3}+\mathrm{V}[2,1]\right\}=\max \{22,20+10\}=30 \\
& \mathrm{~V}[3,5]=\max \left\{\mathrm{V}[2,5], \mathrm{v}_{3}+\mathrm{V}[2,2]\right\}=\max \{22,20+12\}=32 \\
& \mathrm{~V}[4,1]=\mathrm{V}[3,1]=10 \\
& \mathrm{~V}[4,2]=\max \left\{\mathrm{V}[3,2], \mathrm{v}_{4}+\mathrm{V}[3,0]\right\}=\max \{12,15+0\}=15 \\
& \mathrm{~V}[4,3]=\max \left\{\mathrm{V}[3,3], \mathrm{v}_{4}+\mathrm{V}[3,1]\right\}=\max \{22,15+10\}=25 \\
& \mathrm{~V}[4,4]=\max \left\{\mathrm{V}[3,4], \mathrm{v}_{4}+\mathrm{V}[3,2]\right\}=\max \{30,15+12\}=30 \\
& \mathrm{~V}[4,5]=\max \left\{\mathrm{V}[3,5], \mathrm{V}_{4}+\mathrm{V}[3,3]\right\}=\max \{32,15+22\}=37
\end{aligned}
$$

\{here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}}<0$ \}
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}}<0$ \}
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}}<0$ \}
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}}<0$ \}
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}
$\left\{\right.$ here, $\left.\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0\right\}$
$\left\{\right.$ here, $\mathrm{j}-\mathrm{w}_{\mathrm{i}} \geq 0$ \}

The maximum value of the sack is $\mathbf{3 7}$

To find Solution Set

The composition of the optimal subset is obtained by tracing back the computations of the entry in the table.

Since $V[4,5] \neq V[3,5]$, item 4 was included in the optimal solution
The remaining 3 units of the knapsack capacity is represented by element V[3, 3]. Since $\mathrm{V}[3,3]=\mathrm{V}[2,3]$, item 3 is not a part of the optimal subset.

Since $V[2,3] \neq \mathrm{V}[1,3]$, item 2 is a part of an optimal selection.
Similarly, since $\mathrm{V}[1,2] \neq \mathrm{V}[0,2]$, item 1 is the final part of the optimal solution.

Therefore, solution set $\left\{\mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}, \mathbf{I}_{\mathbf{4}}\right\}$.

